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Abstract: Seasonal water supply forecasts are a critical component of regional water resources management planning. Across the United
States, multiple modeling tools and operational protocols have evolved over time to address this need. Here, the authors document, assess, and
recommend improvements to the current operational water supply forecasting protocols employed in managing flows through, and water
levels across, Earth’s largest lake system: the Laurentian Great Lakes. The water resources management actions for this massive system are
critically linked to North America’s economy, and to human health and safety, through planning and policy decisions related to hydropower
management, commercial navigation, and water level fluctuations. The authors’ assessment indicates that existing operational seasonal water
supply forecasting systems for the Great Lakes have moderate skill and that there are several high-priority areas for improvement, including
improved representation of initial hydrological conditions, aligning variability in future meteorological forcings with climate-scale projec-
tions, and robust representations of forecast uncertainty. DOI: 10.1061/(ASCE)WR.1943-5452.0001214. This work is made available under
the terms of the Creative Commons Attribution 4.0 International license, https://creativecommons.org/licenses/by/4.0/.
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Introduction

Seasonal water supply forecasts are a critical component of robust
regional water resources management planning (Jackson et al.
2001; Chiew et al. 2003). Throughout North America, multiple
forecasting systems, as well as operational protocols for employing
those systems, have evolved over time. In the Mountain West, for
example, there is a long history of forecasting seasonal water sup-
plies through empirical models based on spring snow-water equiv-
alent (Wood and Lettenmaier 2006; Pagano et al. 2009). Elsewhere,
more complex physically based models are employed (Anghileri
et al. 2016), and efforts aimed at improving the use of ensemble
climate forecasts, such as the North AmericanMulti-Model Ensemble
(NMME), are ongoing (Bolinger et al. 2017; Lavers et al. 2009;
Shukla et al. 2016). The range of water supply forecasting protocols
and systems is further amplified by the diversity in forecasting envi-
ronments, ranging from those that are research-oriented to those
that are fully operational. These forecasting environments, under-
standably, are designed to meet widely varying regulatory, ecologi-
cal, and economic criteria.

Laurentian Great Lakes System

Water is abundant in the Laurentian Great Lakes (Fig. 1), which
contain roughly 20% of the Earth’s unfrozen fresh surface water
(by volume) and are collectively the largest surface area of fresh
water (Lake Superior alone is the largest lake on Earth by surface
area, Gronewold et al. 2013). Although water is abundant in the
region and the range of variability (Fig. 2) in water levels is small
relative to the maximum depth of the lakes (406 m in the case of
Lake Superior), both long- and short-term water level variability
combine to have dramatic impacts on wetland migration and
nearshore ecology (Duhamel et al. 2017), commercial navigation
(Millerd 2011), municipal water supplies (International Upper
Great Lakes Study 2012), and public and private property (Norton
et al. 2011). The long- and short-term variability that characterizes
the Great Lakes historical record of water levels (Fig. 2) offers a
contrast to other regions where hydrologic conditions are charac-
terized by monotonic sea level rise, flash floods, or chronic
drought (Ekman 1999; Cooper et al. 2008).

Similar to other transboundary basins, where challenges related
to international boundaries have resulted in unique approaches to
water managemet (e.g., Biancamaria et al. 2011), the binational
management of the waters of the Great Lakes and St. Lawrence
River basin, which is home to eight US states and two Canadian
provinces, has resulted in the evolution of unique forecast proto-
cols. Flows in the connecting channels of the Great Lakes are
regulated at three locations: the St. Marys River at the St. Marys
Rapids in Sault Ste. Marie, the Niagara River (where regulation
allocates flow among the Niagara Falls and US and Canadian hy-
dropower, but the total flow is not regulated), and the St. Lawrence
River at the Moses Saunders Dam in Massena, New York and
Cornwall, Ontario. Management of the Great Lakes is the respon-
sibility of the International Joint Commission (IJC), which is
guided by the Boundary Waters Treaty of 1909. The USACE and
Environment and Climate Change Canada (ECCC) provide tech-
nical support to the IJC through the International Lake Superior
Board of Control, the International Niagara River Board of Con-
trol, and the International Lake Ontario-St. Lawrence River Board.
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Interestingly, no single authority is similarly charged with provid-
ing these agencies with seasonal water supply forecasts. The Na-
tional Oceanic and Atmospheric Administration (NOAA) National
Weather Service River Forecasting Centers, which historically pro-
vide these forecasts in other riverine systems in the United States,
have jurisdictional boundaries that do not align with those of the
Great Lakes watersheds, nor do they extend across Canadian land
surfaces. As such, seasonal basinwide hydrological forecasting for
the Great Lakes, as well as the propagation of those supplies into
lake water levels and flows through the channels that connect the
lakes, falls under the operational protocols of the USACE and
ECCC.

Seasonal water supply forecasts in the Great Lakes basin must
address several challenges, some of which are unqiue to the basin,
but some of which share commonalities with many other water
management applications. The transboundary nature of the basin
and its management require coordination of data and forecasts
across juristictional boundaries. The translation of water supply
to lake levels requires simultaneous simulation of flows through
all of the connecting channels, which are dependent on lake-to-lake
water level differences, channel characteristics (including ice and
weed retardation), and regulation of the St. Marys and St. Lawrence
River control structures. In addition to these challenges related to

transboundary water management, the large surface areas of the lakes
relative to the basin areas results in the need to accurately represent
the combined influence of both overlake and overland processes.
Finally, water supply forecasts in the Great Lakes face many of the
challenges that are common across water management applications
and regions, such as resolving the influence of operator judgment in
forecast skill, adequately representing initial conditions (Haibin et al.
2009; Shukla and Lettenmaier 2011), incorporating the use of cli-
matic forecasts (Shukla and Lettenmaier 2011; Shukla et al. 2016),
and representing uncertainty (Schaake et al. 2007; Roscoe et al.
2012).

Scientific Objectives

For the Laurentian Great Lakes, basin-scale seasonal water supply
forecasts are an intermediate stepping stone toward forecasts of
lakewide average water levels and flows in the connecting channels
(i.e., St. Marys, St. Clair, Detroit, Niagara, and St. Lawrence
Rivers, all shown in Fig. 1). The purpose of this study is to docu-
ment existing seasonal operational water supply and water level
forecasting protocols, introduce rigorous verification methods into
forecast procedures, and benchmark the performance of water sup-
ply models used in water level forecasts. The Great Lakes serve as

Fig. 1. Map of Laurentian Great Lakes drainage basin including major cities, political boundaries, interbasin diversions, and interconnecting
channels. (Image courtesy of NOAA Great Lakes Environmental Research Laboratory.)
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an ideal test bed for improving operational water supply forecasting
because they face challenges that are common both to the land
surface hydrologic science community and to lake and reservoir
management agencies. Great Lakes hydrological forecasting also
requires reconciliation of discrepancies in international water bal-
ance monitoring and forecasting protocols between the United
States and Canada (Gronewold and Fortin 2012; Mason et al. 2019).
Finally, there is currently a high demand for improving seasonal
water supply forecasting in the Great Lakes, particularly in light of
recent extreme water level fluctuations (Lenters 2001; Quinn 2002;
Assel et al. 2004; Gronewold and Stow 2014a; Gronewold et al.
2015; Carter and Steinschneider 2018) and their impacts on coastal
flooding, wetland migration, commercial navigation, and hydro-
power management (Wilcox et al. 2002; Millerd 2011).

Current Great Lakes Seasonal Hydrological
Forecasting Protocols

USACE and ECCC produce seasonal water level forecasts in their
role supporting the regulation of Lake Superior and Lake Ontario
outflows. Seasonal water level forecasts generated by USACE and
ECCC are coordinated and communicated to the public through the
Monthly Bulletin of Lake Levels for the Great Lakes (published
by USACE) and the Monthly Water Level Bulletin (published by
ECCC). While USACE conducts regular internal assessments of
forecasts used in operational procedures, formal documentation of
the skill of the water supply forecast models used by USACE is lim-
ited to studies by Noorbakhsh and Wilshaw (1990), Croley and
Lee (1993), and Gronewold et al. (2011).

Water level forecasts are driven by forecasts of net basin supply
(NBS), which represent an estimate of the supply of water to a lake,

excluding flows through connecting channels and diversions.
Under the assumption that contributions from groundwater are neg-
ligible, NBS is equal to the precipitation over the lake, P, plus the
lateral tributary runoff to the lake, R, minus the evaporation from
the lake, E [Eq. (1)]. Because of the large surface areas of the lakes
relative to their watershed areas, the overlake components (precipi-
tation and evaporation) represent a much larger portion of the lakes’
water budgets than for most other lakes and managed reservoirs:

NBS ¼ Pþ R − E ð1Þ

NBS is then translated to changes in water levels through the use
of the Coordinated Great Lakes Regulation and Routing Model
(CGLRRM), which was developed by the Coordinating Committee
on Great Lakes Basic Hydraulic and Hydrologic Data, composed
of members of US and Canadian federal agencies [for details on
the Coordinating Committee, see Gronewold et al. (2018)]. The
CGLRRM incorporates regulation rules and relationships required
to estimate flow through the connecting channels. While there is
one coordinated routing model (CGLRRM), the method used to
forecast NBS is determined by USACE-Detroit and ECCC inde-
pendently. Accordingly, in this study, the focus is on the water sup-
ply (i.e., NBS) forecasts that are behind the USACE contribution to
the coordinated 6-month forecast.

Seasonal hydrological forecasting models tend to fall into one of
several discrete categories, including those that are process-oriented,
empirical, or physically based (Weber et al. 2012; Rheinheimer et al.
2016). NBS models used in the USACE-Detroit water level forecasts
fit into the process-oriented and empirical categories. These models
include the process-oriented Great Lakes Advanced Hydrological
Prediction System (GL-AHPS), a trend model, and a regression
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Fig. 2. Monthly lakewide average water levels (meters IGLD-85) for Laurentian Great Lakes over past 100 years.
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model. These models are briefly summarized in Table 1. Each model
is described in more detail in the methods section.

The forecast NBS values that result from each of these models
run by USACE are not published in an operational forecast. How-
ever, the NBS projections are used in the operational water level
forecast that constitutes the US contribution to the internationally
Coordinated Great Lakes Water Level Forecast. The protocol for
using the NBS forecasts as input to water level forecasts is de-
scribed here.

Prior to running the NBS forecast models, the operator conducts
a qualitative assessment of current and recent hydrological and
meteorological conditions. This assessment takes into considera-
tion past months’ temperatures, precipitation amounts, and NBS
values, as well as snowpack, ice cover, streamflows, and soil
moisture conditions. Additionally, the operator considers the ex-
pected climatic conditions over the next 6 months, drawing from
the NOAA Climate Prediction Center’s (CPC) seasonal climate
outlook maps and associated prognostic discussion (NOAA CPC
2005), near-term forecasts (e.g., NOAAWeather Prediction Cen-
ter’s Quantitative Precipitation forecasts, NOAAWPC 2019) and
precipitation and temperature forecasts aggregated to the lake ba-
sin scale made available by the Great Lakes Seasonal Climate
Forecast Tool (Bolinger et al. 2017). This assessment is docu-
mented in an internally archived climate outlook summary discus-
sion and provides the operator with a basis for evaluating NBS
forecasts.

After the NBS forecasts are run, the operator evaluates each
NBS sequence generated, considering the expectations described
in the aforementioned climate outlook summary. The operator se-
lects the “best” model based on an understanding of how existing
basin conditions and forecast meteorology may translate to NBS.
This is referred to as the operator-selected value (OSV) in the re-
mainder of this paper. In addition to the three models described
here, the operator considers a persistence model, in which the
forecast 1-month NBS has the same probability of exceedance
as the previous month’s observed NBS. This model is also con-
sidered in the analysis here and will subsequently be referred to as
the Persistence model. In the case where none of the four models
reflect expected NBS trends, given the existing and forecast basin
conditions, the operator may choose to reject model output in fa-
vor of an OSV. Finally, conventional practice is to favor forecasts

that do not stray far from average conditions, unless there is
unusually strong indication of wet or dry conditions in the cli-
matic forecast.

Uncertainty bounds are then placed around the deterministic
operator-selected projection using historical sequences of NBS. In
practice, because the components of NBS (precipitation over the
lake, runoff to the lake, and evaporation from the lake) are derived
from sparse monitoring networks (Gronewold and Stow 2014b),
the residual net basin supply, NBSR, is used to represent historical
NBS. NBSR is equal to the change in storage minus the inflow to
the lake through connecting channels and diversions plus the out-
flow through connecting channels and diversions. The relationship
between NBSR and the NBS derived from the components (Pþ
R − E, or component NBS, NBSC) is derived from the water bal-
ance equation [Eq. (2)]:

ΔS ¼ Pþ R − EþQin −Qout þ ε ð2Þ
whereΔS = change in storage (observable in change in water level);
Qin and Qout = inflows and outflows through connecting channels,
respectively; and ε = error term reflecting uncertainty in observa-
tions and incomplete representation of water balance (resulting
from neglecting the contribution of groundwater, for example).
Eq. (2) is rearranged, leaving NBSC on one side and the NBSR
on the other side, as in Eq. (4):

ΔS −Qin þQout ¼ Pþ R − Eþ ε ð3Þ
or

NBSR ¼ NBSCþε ð4Þ

The upper and lower bounds of the NBS forecast are determined
by finding the 5th and 95th percentile values of cumulative NBSR
sequences for a given forecast horizon (i.e., the 1-month forecast
bounds determined using the historical NBS values for that calen-
dar month, the 2-month forecast bounds are determined using the
cumulative 2-month NBS, then distributed to monthly). These so-
called operational 5% and 95% supplies are updated periodically.
During the analysis period of 2007–2018, the operational supplies
were updated twice: once in 2010 and once in 2014.

The final stage in developing a water level forecast is to route the
operator-selected NBS sequences and the 5th and 95th percentile

Table 1. NBS models and data sources used in USACE-Detroit water-level forecasts

Forecast model Data inputs Source of data Method behind input data

GL-AHPS Daily overlake and overland subbasin
meteorological data up to previous day

Calculated within GL-AHPS
software

Thiessen polygon estimates using station data

Ensemble of overlake and overland subbasin
meteorological data for forecast period

Calculated within GL-AHPS
software

Thiessen polygon estimates using an ensemble of
sequences of station data drawn from a climatological
period

Regression Previous 3 months’ NBS Provisional residual NBS Calculated at start of each forecast using provisionally
coordinated beginning-of-month water levels,
inflows, and outflows

Previous 6 months’ precipitation USACE Great Lakes Daily
Precipitation Report

Overbasin estimation using Thiessen polygon method

Previous 1 month’s temperature USACE-Detroit District software Basin-averaged temperature estimated using Thiessen
polygon method

Forecast temperature and precipitation for
coming month

Estimated by forecaster Based on evaluation of NMME average and CPC
climate outlook maps

Trend Annual NBS for past 35 years Monthly residual NBS Computed using water levels, inflows, and outflows
Monthly NBS for past 18 months Monthly residual NBS Computed using water levels, inflows, and outflows
Precipitation for past 12 months USACE Great Lakes Daily

Precipitation Report
Overbasin estimation using Thiessen polygon method

Long-term average monthly precipitation Coordinated monthly values Overbasin estimation using Thiessen polygon method
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NBS sequences through the CGLRRM to produce monthly mean
water levels. These monthly mean water levels are then coordinated
with counterparts in ECCC, with the end result becoming the in-
ternationally coordinated Great Lakes water levels forecast.

Methods

In a typical model skill assessment, simulations are conducted us-
ing observed meteorology as input, whether it is during a verifica-
tion period or through the use of cross-validation procedures.
Although this can provide insight into the benefits of different mod-
els, results from these approaches do not fully represent the true
skill of a forecast methodology. In reality, it is reasonable to assume
that the forecast skill is highly dependent on model inputs, many of
which are forecast themselves. The importance of archiving fore-
casts to provide a means for monitoring model performance under
actual forecasting conditions has been noted by Gronewold et al.
(2011) in the context of improving Great Lakes water level fore-
casting. Since 2002, USACE has been archiving digital outputs
used to inform water level forecasts published in its Monthly
Bulletin of Great Lakes Water Levels. Although archiving was ini-
tially irregular and the methodology has evolved to incorporate the
current suite of models developed since then, the repository of con-
sistently archived forecasts is now large enough (2007 to present) to
conduct a rigorous assessment of the actual forecast skill of each of
these models. The following subsections provide descriptions of
the individual NBS models evaluated in this study, introduce the
data sets used for benchmarking model performance, and present
the approaches used to assess water supply and water level forecast
performance.

NBS Models

Process-Oriented Models
It is informative to note that few watershed and process-oriented
models have been developed for seasonal prediction over the entire
Great Lakes domain. To the authors’ knowledge, the only pub-
lished process-oriented model that has been developed and applied
for seasonal forecasting across the Canadian and US land surfaces
of the basin is the GL-AHPS) [for details see Gronewold et al.
(2011)], which employs a modified version of the conventional ex-
tended streamflow prediction (ESP) procedure (Day 1985) with
weighted outlooks (Croley and Hartmann 1987). Other projects
that have in fact focused on improving hydrological forecasting
across the Great Lakes basin, including development of the Modé-
lisation Environnementale–Surface et Hydrologie (MESH) system
(Pietroniro et al. 2007) and customization of the Regional Climate
Model system (RegCM) (Notaro et al. 2015), have done so for ei-
ther much shorter or longer forecasting horizons.

The GL-AHPS is a Microsoft Windows (Redmond, Washington)
based NBS and water level forecasting application developed by
NOAA’s Great Lakes Environmental Research Laboratory (GLERL)
[for details see Croley (2000) and Gronewold et al. (2011)].
GL-AHPS passes overlake and overbasin precipitation and temper-
ature estimates to a lake thermodynamic model (LTM), described by
Croley (1989), and a Large Basin Runoff Model (LBRM) [for details
see Croley and He (2002)] to estimate the overlake evaporation and
runoff to the lakes, respectively, and then ultimately calculates NBS
for each lake. GL-AHPS forecasts are run using a probabilistic fore-
casting framework in which the LTM and LBRM are driven by an
ensemble of meteorology time series created by weighting each
year of the historical record of meteorology. In the USACE opera-
tional use of GL-AHPS, the weights are assigned by taking into

consideration the NOAA CPC seasonal climatic outlooks using pro-
cedures described in Croley (2000). The forecast is initialized by
first running the models using a provisional record of hydrometeoro-
logical variables, created by extracting data from NOAA’s National
Climatic Data Center (NCDC) and calculating subbasin and over-
lake averages using a Thiessen weighting algorithm (Croley and
Hartmann 1985).

Statistical Water Supply Models
The Trend model for forecasting NBS, described in detail by
Noorbakhsh and Wilshaw (1990), was developed using time series
analysis of NBS broken down into three components: trend, seasonal
variation, and cycle. The trend component consists of an analysis of
primary and secondary trends in NBS. Prior to computing the pri-
mary and secondary trends, NBS is converted to so-called coded
NBS, NBScoded, to eliminate fractions and negative values. The pri-
mary trend, NBSprimary, is determined by a least-squares fit of annual
coded NBS to a line, as in Eq. (5):

NBSprimary ¼ Interceptþ Slope × X ð5Þ

In Eq. (5), X represents the time from the beginning of the
period of record of annual NBS. In current practice, a period of
record of 35 years is used in the determination of Intercept and
Slope used for the primary trend in Eq. (5). The secondary trend,
NBSsecondary, is determined using seasonally coded NBS for the
past 6 and 18 months (seasonally coded NBS ¼ NBScoded divided
by a seasonality index to remove seasonal effects). These seasonal
indices represent the average fraction of the annual NBS that is
contributed by each month of the year. This secondary trend is com-
puted as shown in Eq. (6):

NBSsecondary ¼
P−18

m¼0
NBScoded

SIm

3
þ
X−6

m¼0

NBScoded
SIm

ð6Þ

where m = month index from current month, 0; and SIm = seasonal
adjustment for month m. The total trend component for the fore-
casted month is then computed using Eq. (7):

NBStotal ¼
NBSprimaryþNBSsecondary

2
þ NBSprimary

24
ð7Þ

Finally, a cycle component is applied based on the prior
12 months’ precipitation relative to average [Eq. (8)]:

CF ¼ 1þ A=B − 1

6
ð8Þ

where CF = cycle correction factor; A = sum of previous
12 months’ precipitation; and B = long-term average annual pre-
cipitation. The final NBS forecast from the Trend model, NBSTrend,
combines the cycle component represented in Eq. (8) with the trend
component computed in Eq. (7), plus a seasonal adjustment using
Eq. (9). In practice, the Trend model is computed using residual
NBS, NBSR [Eq. (4)]:

NBSTrend ¼ NBStotal × CF × SIm ð9Þ

The Regression model, also described by Noorbakhsh and
Wilshaw (1990), is the result of a multiple linear regression to de-
scribe the relationship between the coming month’s NBS, NBSm,
and that month’s precipitation and temperature and antecedent con-
ditions, including the prior 6 months’ precipitation, the prior
3 months’ NBS, and the previous month’s temperature [Eq. (10)]:
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NBSm ¼
Xm−6

i¼m

aiPi þ
Xm−1

j¼m

bjTj þ
Xm−3

k¼m−1
ckNBSk ð10Þ

where m = month for which NBS is predicted; Pi, Tj, and NBSk =
precipitation for month i, average temperature for month j, and
NBS for month k, respectively; and ai, bj, and ck = calibration
coefficients for each calendar month. The operational version of
the Regression model predicts only the coming month’s NBS
(i.e., m ¼ 0). Variables without significant correlation were not
included in the regression equation. The Regression model is re-
calibrated periodically to incorporate new observations. The most
recent calibration was conducted in 2004 and incorporated data
from 1918 to 1999. Data used to calibrate the model included
NBSR [Eq. (4)], monthly precipitation determined using a Thies-
sen weighting method for estimating basinwide precipitation from
a land-based network of gauges, and average basinwide temper-
ature also determined using a Thiessen weighting method.

Operationally, the coming month’s forecast temperature and
precipitation are estimated using basin-averaged forecasts derived
from the NMME (Bolinger et al. 2017).

Data Used for Benchmarking Model Performance

To assess the skill of the NBS forecast models, NBS forecasts,
including the OSV, are extracted from the USACE digital archives
and evaluated by comparing the forecast NBS with the historical
record of residual NBS, NBSR. NBSR is used for benchmarking
model skill rather than NBSC because of the highly uncertain
nature of runoff and overlake precipitation and evaporation. Addi-
tionally, the water levels and flows used to compute NBSR values
are regularly coordinated between the Canadian and US govern-
ments, and as a result NBSR is considered to be the best estimate
of actual NBS despite some uncertainty in lake level and connect-
ing channel flow measurements. Residual NBS values have been
coordinated by USACE and ECCC for Lakes Superior, Michigan-
Huron, St. Clair, and Erie through 2008. These values, along
with subsequent provisional residual NBS values and, for Lake
Ontario, provisional NBS values for the entire period, form the
so-called observational data set used in this study.

Lakewide average water levels are computed using a network of
gauges operated by NOAA and the Canadian Hydrographic Service.
The daily water levels for each gauge are averaged, and then monthly
mean water levels are computed. When a gauge is not reporting, the
daily lakewide averages are computed using a gauge pairing logic
developed and agreed to by the Coordinating Committee.

Assessment Approach

Accurate prediction of the magnitude, frequency, and timing of
high and low flows is the goal of most hydrological models,
and most skill metrics used in hydrological modeling studies reflect
this goal. In the case of seasonal water budget prediction, however,
the traditional metrics may be less informative, particularly because
accumulation of bias over a season can be quite profound, despite
skill in representing the features of a hydrograph. While average
percentage bias is one indication of skill that is informative, in
reality, the cumulative NBS over a forecast horizon is the only
way to answer the question of whether there will be more or less
water after all that happens over 6 months (or, in the case of water
level forecasting, whether water levels will be higher or lower in
6 months’ time). Accordingly, forecasts’ skill at representing cu-
mulative NBS is assessed.

Two approaches were used to assess the skill of the individual
deterministic NBS models. In the first approach, the skill of each

model is assessed directly against observations of NBSR by graphi-
cally comparing the cumulative NBS predicted by each model with
the observed cumulative NBS. This direct graphical comparison
is conducted for all archived forecasts and for archived forecasts
aggregated by forecast start month. In the second approach, the
so-called categorical skill of each model is determined using con-
tingency tables. The first approach is meant to provide a baseline
skill assessment with which to compare future model and operational
protocol developments. The categorical approach was included in
this analysis to improve forecasters’ interpretation of model output
and guide the model selection process.

The current operational protocol used by USACE involves se-
lecting NBS model output that is reasonable given current basin
conditions and climate forecasts. In practice, due to the complex-
ities of hydrological conditions at this spatial and temporal scale as
well as uncertainty in climate guidance, an operator’s expectations
are rarely more nuanced than expecting below or above normal
NBS for a given month. Operator selection of NBS values typically
reflects how well the model’s forecast supply for a given month
reflects these categorical expectations. Accordingly, skill metrics
based on contingency tables, such as the Heidke Skill Score (HSS)
(Heidke 1926), are useful metrics that can aid in selecting appro-
priate NBS forecasts. The HSS has traditionally been used in
meteorological studies since its inception in 1926 (e.g., Livezey and
Timofeyeva 2008; O’Lenic et al. 2008; McEvoy et al. 2016). This
score provides an indication of how well a model forecasts certain
outcomes, relative to a random prediction. The HSS metric is com-
puted using a 2 × 2 contingency table (as in Table 2) of above and
below median NBS for cumulative NBS predictions. Numbers
along the main diagonal ðX11;X22Þ represent correct forecasts of
above or below median NBS. Values in the other two cells represent
missed forecasts ðX12;X21Þ. Using the HSS allows evaluation of the
accuracy of predicting NBS as falling into the two categories: be-
low or above average NBS. Although skill scores based on contin-
gency tables are useful for assessing the ability to forecast above or
below median NBS categorically, they do not fully represent the
magnitude of forecast performance.

The HSS is calculated from a contingency table using Eq. (11):

HSS ¼ NC − E
T − E

ð11Þ

where NC = number correct; E = number correct that would be
expected by a random forecast; and T = total number of forecasts.
In the contingency table shown in Table 2, NC, E, and T are cal-
culated as

NC ¼
Xm

i¼1

Xii ð12Þ

E ¼
P

m
i¼1 ðXipXpiÞ

T
ð13Þ

Table 2. Example of 2 × 2 contingency table of forecast versus observed
above- and below-median NBS (median refers to climatological median of
NBS for a given month or months)

Observed

Forecast

Above median Below median Total

Above median X11 X12 X1p
Below median X21 X22 X2p
Total Xp1 Xp2 Xpp
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T ¼ Xpp ð14Þ

In Eqs. (12)–(14) and Table 2, i is used for categories, m repre-
sents the number of categories, and p is used for totals in rows or
columns. NC represents the sum of the number of correct forecasts,
which is the sum of the values that fall along the main diagonal in the
contingency table (i.e., X11 and X22). Xpp can be found by adding
the totals along the bottom row (total forecasted) or the last column
(total observed). Xip represents the total number observed in row i,
while Xpi represents the total number forecasted in column i.

Barnston (1992) has noted that when the categories are equally
probable (as they are in this study), the HSS is an “equitable” skill
score, because the probability of a correct random forecast does not
depend on the category of the observation. The HSS can range from
−1.0 to 1.0, where positive values indicate a forecast that is better
than a random forecast, and negative values indicate a forecast that
is worse. A perfect forecast would have an HSS score of 1.0.

In addition to evaluating the skill of the individual NBS models,
the validity of using the operational 5% and 95% supplies derived
from historical residual NBS to express forecast uncertainty is
evaluated by comparing the range of operational supplies used dur-
ing the analysis period with observed supplies.

Finally, to demonstrate the eventual impact of NBS forecast skill
on water level forecasts, water level hindcasts are compared with

actual monthly mean observed lakewide average water levels. Prior
to 2017, the operational protocol was such that the routing and
regulation model used to translate NBS forecasts to water levels
was only run for the operator-selected NBS values. In 2017, this
procedure was changed so that water level forecasts from all NBS
models could be compared during the operator selection process.
Accordingly, water level forecasts from individual models prior to
2017 were unavailable. For this period, water levels were reforecast
by running the archived NBS sequences from each model through
the CGLRRM using actual starting levels. Subsequent to December
2016, actual archived water level forecasts for each model were
used in this analysis.

Results

The analysis period includes several noteworthy years, among them
2010, which was characterized by very low NBS, and 2013, 2014,
and 2017, which were characterized by very high NBS. In fact, the
record-setting 2-year rise on Lake Superior and Michigan-Huron
from 2013 to 2014 followed a decade-long period of low water
levels that included a record low Lake Superior water level in
2007 and culminated in a record low Lake Michigan-Huron water
level in January of 2013. The inclusion of years with very low NBS

Dec, Jan, Feb Mar, Apr, May Jun, Jul, Aug Sep, Oct, Nov

G
L−

A
H

P
S

−400

−200

0

200

Tr
en

d

−400

−200

0

200

R
eg

re
ss

io
n

−400

−200

0

200

P
er

si
st

en
ce

−400

−200

0

200
O

S
V

−400

−200

0

200

J M S J M S J M S J M S J M S J M S J M S J M S J M S J M S J M S J M S J

2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018

Lake Superior Cumulative Error in NBS Forecast (mm)

Fig. 3. Error in cumulative NBS predictions from each model (rows) for Lake Superior. Regression and Persistence models are applied for 1-month
forecasts only and so are shown as points.
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and years with very high NBS makes this analysis period particu-
larly interesting for assessing seasonal hydrological forecasts.

Cumulative NBS Forecasts from Individual Models

The error in cumulative NBS predictions from each model for Lake
Superior is shown in Fig. 3. Similar plots for Lakes Michigan-
Huron, Erie, and Ontario are provided in the Supplemental Material
Figs. S1–S3. In Fig. 3, a shift in forecast bias from positive to neg-
ative occurs in 2013 for the GL-AHPS, Trend, and OSVs and can
be explained by the dramatic change from a long period of low
NBS ending in 2012 to a period of generally high NBS. Similarly,
cumulative NBS predictions for the other lakes shown in the
Supplemental Material show underprediction during transitions
to wet conditions (e.g., LakeMichigan-Huron forecasts made in early
2013 when Lake Superior and Michigan-Huron began a record-
setting 2-year rise and Lake Ontario forecasts made in 2017 when
record-high water levels were set in the spring and early summer)
and overprediction during transitions to drier conditions (e.g., fore-
casts made for Lake Erie in early 2012 after record-high annual
NBS in 2011 on that lake).

Average errors in cumulative NBS predictions for each calen-
dar month (e.g., average error in monthly NBS of all forecasts

produced in Januaries) are shown in Fig. 4. When interpreting this
graphic, note that the seasonality of error appears more dramatic for
Lake Michigan-Huron and Lake Ontario. For Lake Michigan-
Huron this is partly due to the larger fluctuations in NBS than seen
on other lakes. For Lake Ontario, the GL-AHPS forecasts greatly
overestimate NBS during fall months and underestimate NBS in the
spring. This is at least in part due to overestimation of runoff during
the fall and underestimation of runoff during the spring. The over-
prediction in the fall and underprediction in the spring is also gen-
erally true for GL-AHPS forecasts for Lake Superior, although less
pronounced than for Lake Michigan-Huron and Lake Ontario. Dur-
ing the spring, snowmelt is an important factor driving the runoff
component of NBS, suggesting that GL-AHPS forecasts could be
improved by better representation of snow accumulation and melt-
ing. In contrast, GL-AHPS generally underpredicts cumulative
NBS for all forecast start months on Lake Erie.

In Fig. 4, the Trend model appears to have a generally small
average error on Lake Erie. Seasonality in bias is larger for Lake
Michigan-Huron but is likely a reflection of the larger seasonal
variability in observed NBS on that lake. The Trend model appears
to underestimate cumulative NBS on Lake Superior on average.
The underestimation by the Trend model for Lake Superior may
in part be a result of the primary trend component of the model
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Fig. 4. Average error in cumulative NBS for each model (rows), each lake (columns), and each calendar month (horizontal axis).
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[described by Eq. (5)], which depends on 35 years of annual NBS
prior to the forecast start date. The unprecedented decade-long
period of low NBS on Lake Superior during the 2000s likely dis-
proportionately influences this primary trend.

Unlike GL-AHPS and Trend forecasts, there does not appear
to be any real seasonality in bias in the 1-month forecasts from
the Regression or Persistence models. The OSV forecast reflects
the seasonal tendencies of the GL-AHPS and Trend models, as these
models factor into the operator selection process. However, the sea-
sonality is somewhat dampened in the operator-selected forecast,
perhaps a result of selecting a combination of multiple models or
forecaster hesitation to diverge far from long-term median values.

Fig. 4 also provides an opportunity to determine whether the
operator selection process improves forecasts. In general, the op-
erator selected value outperforms GL-AHPS and Trend for Lakes
Superior and Michigan-Huron. For Lakes Erie and Ontario, how-
ever, the Trend model has similar or better performance than the
OSVs.

Fig. 5 summarizes the HSSs of the individual NBS models. In
this application, using a 2 × 2 contingency table, the HSS repre-
sents the skill in terms of predicting whether the cumulative
NBS will be above or below the climatological median NBS. In
Fig. 5, the HSSs indicate better performance from the Trend model

than the operator-selected forecast for Lake Superior, despite the
fact that the magnitude of error from the operator-selected forecast
is, on average, less than that of the Trend model (Fig. 4). Likewise,
although the magnitude of error from the operator-selected forecast
is smaller, on average, than that of the GL-AHPS model on Lake
Ontario, the HSSs suggest that GL-AHPS outperforms all other
models when predicting whether cumulative Lake Ontario NBS
will be above or below average. Contingency table analyses, in-
cluding HSSs, are a conventional practice in meteorological fore-
cast assessment but appear to mask deficiencies in the models’
ability to forecast extreme events. In many hydrological forecasting
applications (e.g., flood and drought forecasting), the ability to cor-
rectly predict the magnitude of flows is most important. If the pri-
mary goal is to tell a story of whether water levels will be higher or
lower over a given horizon, however, the results from the categori-
cal assessment are useful.

Representation of Uncertainty

As described in the introduction, the forecast range is produced by
routing operational 5% and 95% supplies to predict a range of water
levels. These operational supplies for Lake Superior are shown as
gray bars in Fig. 6. Similar plots for the other lakes are included
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in the Supplemental Material Figs. S4–S6. In Fig. 6, observed cu-
mulative NBS is not captured by the forecast range during periods of
very low cumulative NBS (e.g., 2010) or periods of very high NBS
(e.g., 2013 and 2014). This is not surprising, considering the limi-
tations of using historical data to represent future uncertainty. For
example, the use of climatological supplies does not accommodate
the representation of initial conditions or forecast climatological con-
ditions. On the whole, observed cumulative NBS falls within the
range of the 5% and 95% values for the 1-, 3-, and 6-month forecasts
72%–84% of the time in the forecast analysis period, suggesting a
need to refine the method for producing forecast uncertainty.

Water Level Forecasts

Although a large portion of the effort in predicting water levels is in
forecasting the NBS, ultimately, forecasts of monthly mean water
levels are the goal. Water level forecasts for Lake Superior resulting
from the operator-selected NBS for three time horizons (1, 3, and
6 months) are shown in Fig. 7. Water level forecasts for Lakes
Michigan-Huron and Erie can be found in the Supplemental
Material Figs. S7 and S8. Over the first month, the water level error
is generally within a few centimeters, but over 6 months, the water
level forecast error resulting from cumulative error in NBS can ac-
cumulate to close to 30 cm. As with NBS forecasting error, there is

a tendency to overpredict water levels during periods of low water
supply and underpredict water levels during periods of high water
supply.

Discussion and Recommendations

With the exception of GL-AHPS, which was fully integrated into
regular operations in 2007, the water supply and water level fore-
cast methods analyzed in this study were integrated into USACE
operational procedures several decades ago. Although continual
assessment of forecasts is conducted internally, this study repre-
sents the first comprehensive, peer-reviewed assessment of the
NBS models used in USACE water level forecasts since the
1990s. As such, the analysis offers an opportunity to provide
analysis-based recommendations to address some of the chal-
lenges described in the introduction, setting the stage for future
improvements to the USACE water level forecasting protocol.
Many of the challenges related to the transboundary nature of
water management in the basin are addressesd through the use
of coordinated data and models resulting from decades of ongoing
efforts of the Coordinating Committee, so discussion presented
here relates to resolving the influence of operator judgment on
forecast skill, representation of initial conditions, incorporation
of seasonal climate forecasts, and representation of uncertainty.
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Interestingly, in many cases, the operator selection process ap-
peared to improve the NBS forecast skill. While this suggests value
in careful consideration of basin conditions and climatic outlooks
when interpreting and utilizing NBS forecasts, it is possible that the
relative success of the operator-selected forecast is in part a result of
the limited degree to which (1) initial conditions, and (2) seasonal
meteorological forecasts are incorporated into the NBS models
themselves.

An attempt to establish initial conditions (e.g., soil moisture of
the lake basin, snow water equivalent over the basin, or heat content
of the lake) is made only by GL-AHPS, which simulates initial con-
ditions during a historical period using observed meteorology. Pre-
vious research has shown that uncertainty in initial conditions has
an influence on hydrological forecast error for lead times up to
about 1 month (Haibin et al. 2009; Shukla and Lettenmaier 2011).
Building on earlier work investigating the utility of data assimila-
tion to improve the initial forecast model state for near term appli-
cations [see the review paper by Liu and Gupta (2007)], recent
work has demonstrated the promise of data assimilation to update
model states in longer-lead forecasts (e.g., Gibbs et al. 2018; Huang
et al. 2017).

At forecast lead times longer than 1 month, Shukla and
Lettenmaier (2011) found that improvement in climate forecast skill
has a greater influence on forecast error. Seasonal climatic forecasts

are applied only in the Regression model and the GL-AHPS model
NBS forecasts. In the Regression model, the basin-averaged median
NMME prediction for precipitation and temperature for the coming
month is applied as an independent variable. GL-AHPS, which is the
only physically based NBS modeling system used in the USACE
forecast, does take into account the climatic conditions in the forecast
horizon by weighting an ensemble of historical meteorology accord-
ing to climatic outlooks using methods described in Croley (2000).
While this allows some influence of climatic forecasts, the method-
ology is limited by the fact that forecast meteorology is never outside
of historical conditions. Additionally, in the current operational pro-
tocol, only the median GL-AHPS forecast is used. Future develop-
ments should improve the use of climatic forecasts as drivers of the
NBS forecast models.

Finally, representation of uncertainty in the existing USACE
water level forecast protocol is limited by the use of historical cumu-
lative NBS to determine a forecast range, as was shown in Fig. 6. This
limitation is linked to a lack of representation of initial conditions and
the lack of consideration of nonstationarity. While using these so-
called operational supplies may have been an appropriate approach
to building uncertainty around deterministic forecasts in the past, ma-
jor advancements in computation and ensemble prediction methods
offer the potential for better representation of the true forecast uncer-
tainty through ensemble prediction (Schaake et al. 2007).
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In light of the advancements in seasonal hydrological prediction
since the establishment of existing USACE Great Lakes water level
forecasting procedures, future developments in operational NBS
forecasts should improve long-lead forecasts by (1) integrating
ensemble forecasts, including the full ensemble prediction from
GL-AHPS (or similar modeling systems) into operational protocol,
(2) investigating the potential for improving forecasts through data
assimilation, (3) exploring the utility of seasonal meteorological
predictions (like NMME) for further model development, and
(4) improving the representation of forecast uncertainty.

Conclusions

This paper provides documentation of the existing operational pro-
cedures used by USACE-Detroit to predict monthly mean water
levels over a 6-month lead time, presents results from a study to
assess the skill of the NBS models used to drive the operational
forecasts, and suggests improvements to the current methodology.
The assessment showed that most NBS forecast models offer some
skill, and the operator selection process to interpret and implement
the NBS models appeared to result in some gain in forecast improve-
ment over individual models. However, significant gaps were
revealed, including, for example, the limited ability to represent ini-
tial conditions, influences of forecast meteorology, and the full range
of uncertainty. The authors hope that this manuscript sets the stage
for future improvements through the use of ensemble prediction, data
assimilation, and better incorporation of seasonal meteorological
predictions.
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